4.4 Article

Isolation and screening of bacterial isolates from wastewater treatment plants to decolorize azo dyes

期刊

JOURNAL OF BIOSCIENCE AND BIOENGINEERING
卷 125, 期 4, 页码 448-456

出版社

SOC BIOSCIENCE BIOENGINEERING JAPAN
DOI: 10.1016/j.jbiosc.2017.11.008

关键词

Activated sludge; Decolorization; Dye degradation; Reactive azo dye; Textile wastewater

资金

  1. Industrial Research Council of KU Leuven [KP/10/006]
  2. Research Council of KU Leuven [OT/13/063]

向作者/读者索取更多资源

The discharge of dye-contaminated wastewater into natural waterways presents a substantial risk to human and environmental health, therefore necessitating the treatment and removal of toxic dyes from colored wastewaters before their release into the ecosystem. The aim of this study was to isolate and characterize bacterial strains capable of decolorizing and/or degrading azo dyes commonly applied in textile production (monoazo dye Reactive Orange 16 and diazo dye Reactive Green 19) from activated sludge systems used in the treatment of (textile) wastewater. Following a prescreening of 125 isolates for their decolorization potential five strains were retained for further evaluation of decolorization rate and effects of physicochemical parameters using a microtiter plate method. Of those five strains, one strain belonging to the genus Acinetobacter (ST16.16/164) and another belonging to Klebsiella (ST16.16/034) outperformed the other tested strains. Both strains exhibited strong decolorization ability (>80%) within a wide temperature range (20 degrees C-40 degrees C) and retained good decolorization activity at temperatures as low as 10 degrees C (especially strain ST16.16/034). Among the different pH values tested (pH 4, 7 and 10), highest dye removal for both strains occurred at pH 7, with decolorization efficiency remaining relatively high under alkaline conditions (pH 10), and neither isolates decolorization efficiency was negatively impacted by high salt or high dye concentration. Furthermore, both strains displayed the highest rate of decolorization and were able to completely (ST16.16/034) or partly (ST16.16/164) degrade the azo dyes. Altogether, our results support the use of these bacteria in the treatment of industrial wastewaters containing azo dyes. (C) 2017, The Society for Biotechnology, Japan. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据