4.5 Article

A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement

期刊

JOURNAL OF BIOMECHANICS
卷 77, 期 -, 页码 146-154

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2018.07.008

关键词

Concurrent analysis; Musculoskeletal model; Biomechanics; Validation; Prosthetic knee

资金

  1. JSPS KAKENHI Grant [16H05874]
  2. Grants-in-Aid for Scientific Research [16H05874] Funding Source: KAKEN

向作者/读者索取更多资源

Concurrent use of finite element (FE) and musculoskeletal (MS) modeling techniques is capable of considering the,interactions between prosthetic mechanics and subject dynamics after a total knee replacement (TKR) surgery is performed. However, it still has not been performed in terms of favorable prediction accuracy and systematic experimental validation. In this study, we presented a methodology to develop a subject-specific FE-MS model of a human right lower extremity including the interactions among the subject-specific MS model, the knee joint model with ligament bundles, and the deformable FE prosthesis model. In order to evaluate its accuracy, the FE-MS model was compared with a traditional hinge-constraint MS model and experimentally verified over a gait cycle. Both models achieved good temporal agreement between the predicted muscle force and the electromyography results, though the magnitude on models is different. A higher predicted accuracy, quantified by the root-mean-square error (RMSE) and the squared Pearson correlation coefficient (r(2)), was found in the FE-MS model (RMSE = 177.2 N, r(2) = 0.90) when compared with the MS model (RMSE = 224.1 N, r(2) = 0.81) on the total tibiofemoral contact force. The contact mechanics, including the contact area, pressure, and stress were synchronously simulated, and the maximum contact pressure, 22.06 MPa, occurred on the medial side of the tibial insert without exceeding the yield strength of the ultra-high-molecular-weight polyethylene, 24.79 MPa. The approach outlines an accurate knee joint biomechanics analysis and provides an effective method of applying individualized prosthesis design and verification in TKR. (C) 2018 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据