4.5 Article

The influence of mechanical vibration on local and central balance control

期刊

JOURNAL OF BIOMECHANICS
卷 71, 期 -, 页码 59-66

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2018.01.027

关键词

Wearable motion sensors; Low-frequency vibratory stimulation; Fall risk; Older adults; Somatosensory system; Stabilogram

资金

  1. Arizona Center on Aging (ACOA), University of Arizona, Tucson, AZ, USA

向作者/读者索取更多资源

Fall prevention has an indispensable role in enhancing life expectancy and quality of life among older adults. The first step to prevent falls is to devise reliable methods to identify individuals at high fall risk. The purpose of the current study was to assess alterations in local postural muscle and central sensory balance control mechanisms due to low-frequency externally applied vibration among elders at high fall risk, in comparison with healthy controls, as a potential tool for assessing fall risk. Three groups of participants were recruited: healthy young (n = 10; age = 23 +/- 2 years), healthy elders (n = 10; age = 73 +/- 3 years), and elders at high fall risk (n = 10; age = 84 +/- 9 years). Eyes-open and eyes-closed upright standing balance performance was measured with no vibration, 30 Hz, and 40 Hz vibration of Gastrocnemius muscles. When vibratory stimulation was applied, changes in local-control performance manifested significant differences among the groups (p < 0.01). On average between conditions, we observed 97% and 92% less change among high fall risk participants when compared to healthy young and older adults, respectively. On the other hand, vibration-induced changes in the central-control performance were not significant between groups (p >= 0.19). Results suggest that local-control deficits are responsible for balance behavior alterations among elders at high fall risk and healthy individuals. This observation may be attributable to deterioration of short-latency reflexive loop in elders at high fall risk. On the other hand, we could not ascribe the balance alterations to problems related to central nervous system performance or long-latency responses. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据