4.6 Article

Ovalbumin self-assembles into amyloid nanosheets that elicit immune responses and facilitate sustained drug release

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 293, 期 29, 页码 11310-11324

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.RA118.002550

关键词

amyloid; albumin; nanotechnology; drug delivery; drug delivery system; antigen; antigen delivery; nanosheet; ovalbumin

资金

  1. University Grants Commission, Government of India

向作者/读者索取更多资源

Amyloids are associated with many neurodegenerative diseases, motivating investigations into their structure and function. Although not linked to a specific disease, albumins have been reported to form many structural aggregates. We were interested in investigating host immune responses to amyloid fibrils assembled from the model protein ovalbumin. Surprisingly, upon subjecting ovalbumin to standard denaturing conditions, we encountered giant protein nanosheets harboring amyloid-like features and hypothesized that these nanosheets might have potential in clinical or therapeutic applications. We found that the nanosheets, without the administration of any additional adjuvant, evoked a strong antibody response in mice that was higher than that observed for native ovalbumin. This suggests that amyloid nanosheets have a self-adjuvanting property. The nanosheet-induced immune response was helper T cell 2 (Th2) biased and negligibly inflammatory. While testing whether the nanosheets might form depots for the sustained release of precursor proteins, we did observe release of ovalbumin that mimicked the conformation of native protein. Moreover, the nanosheets could load the anticancer drug doxorubicin and release it in a slow and sustained manner. Taken together, our results suggest that amyloid nanosheets should be further investigated as either an antigen delivery vehicle or a multifunctional antigen and drug co-delivery system, with potential applications in simultaneous immunotherapy and chemotherapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据