4.7 Article

CIRCUMBINARY RING, CIRCUMSTELLAR DISKS, AND ACCRETION IN THE BINARY SYSTEM UY AURIGAE

期刊

ASTROPHYSICAL JOURNAL
卷 793, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/793/1/10

关键词

planet-disk interactions; protoplanetary disks; stars: formation; stars: individual (UY Aurigae)

资金

  1. NSC [NSC99-2119-M-001-002-MY4]
  2. PCMI
  3. French national program for the Physics and Chemistry of the Interstellar Medium

向作者/读者索取更多资源

Recent exo-planetary surveys reveal that planets can orbit and survive around binary stars. This suggests that some fraction of young binary systems which possess massive circumbinary (CB) disks may be in the midst of planet formation. However, there are very few CB disks detected. We revisit one of the known CB disks, the UY Aurigae system, and probe (CO)-C-13 2-1, (CO)-O-18 2-1, SO 5(6)-4(5) and (CO)-C-12 3-2 line emission and the thermal dust continuum. Our new results confirm the existence of the CB disk. In addition, the circumstellar (CS) disks are clearly resolved in dust continuum at 1.4 mm. The spectral indices between the wavelengths of 0.85 mm and 6 cm are found to be surprisingly low, being 1.6 for both CS disks. The deprojected separation of the binary is 1.'' 26 based on our 1.4 mm continuum data. This is 0.'' 07 (10 AU) larger than in earlier studies. Combining the fact of the variation of UY Aur B in R band, we propose that the CS disk of an undetected companion UY Aur Bb obscures UY Aur Ba. A very complex kinematical pattern inside the CB disk is observed due to a mixing of Keplerian rotation of the CB disk, the infall and outflow gas. The streaming gas accreting from the CB ring toward the CS disks and possible outflows are also identified and resolved. The SO emission is found to be at the bases of the streaming shocks. Our results suggest that the UY Aur system is undergoing an active accretion phase from the CB disk to the CS disks. The UY Aur B might also be a binary system, making the UY Aur a triple system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据