4.6 Article

Spatially dependent alkyl quinolone signaling responses to antibiotics in Pseudomonas aeruginosa swarms

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 293, 期 24, 页码 9544-9552

出版社

ELSEVIER
DOI: 10.1074/jbc.RA118.002605

关键词

Pseudomonas aeruginosa (P; aeruginosa); antibiotics; quorum sensing; Raman spectroscopy; mass spectrometry (MS); biofilm; N-oxide; PQS; quinolone; secondary ion mass spectrometry; swarming

资金

  1. NIAID, National Institutes of Health [R01AI113219]
  2. Springborn Endowment
  3. National Science Foundation Graduate Research Fellowship Program
  4. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [R01AI113219] Funding Source: NIH RePORTER

向作者/读者索取更多资源

There is a general lack of understanding about how communities of bacteria respond to exogenous toxins such as antibiotics. Most of our understanding of community-level stress responses comes from the study of stationary biofilm communities. Although several community behaviors and production of specific biomolecules affecting biofilm development and associated behavior have been described for Pseudomonas aeruginosa and other bacteria, we have little appreciation for the production and dispersal of secreted metabolites within the 2D and 3D sUpaces they occupy as they colonize, spread, and grow on surfaces. Here we specifically studied the phenotypic responses and spatial variability of alkyl quinolones, including the Pseudomonas quinolone signal (PQS) and members of the alkyl hydroxyquinoline (AQNO) subclass, in P. aeruginosa plate-assay swarming communities. We found that PQS production was not a universal signaling response to antibiotics, as tobramycin elicited an alkyl quinolone response, whereas carbenicillin did not. We also found that PQS and AQNO profiles in response to tobramycin were markedly distinct and influenced these swarms on different spatial scales. At some tobramycin exposures, P. aeruginosa swarms produced alkyl quinolones in the range of 150 m PQS and 400 m AQNO that accumulated as aggregates. Our collective findings show that the distribution of alkyl quinolones can vary by several orders of magnitude within the same swarming community. More notably, our results suggest that multiple intercellular signals acting on different spatial scales can be triggered by one common cue.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据