4.6 Article

The HIRAN domain of helicase-like transcription factor positions the DNA translocase motor to drive efficient DNA fork regression

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 293, 期 22, 页码 8484-8494

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.RA118.002905

关键词

DNA replication; DNA repair; DNA damage response; DNA helicase; nucleic acid enzymology; DNA damage response; DNA repair; fork reversal; replication restart; stalled replication fork

资金

  1. National Institutes of Health [P01CA092584, P30CA068485]

向作者/读者索取更多资源

Helicase-like transcription factor (HLTF) is a central mediator of the DNA damage response and maintains genome stability by regressing stalled replication forks. The N-terminal HIRAN domain binds specifically to the 3-end of single-stranded DNA (ssDNA), and disrupting this function interferes with fork regression in vitro as well as replication fork progression in cells under replication stress. Here, we investigated the mechanism by which the HIRAN-ssDNA interaction facilitates fork remodeling. Our results indicated that HIRAN capture of a denatured nascent leading 3-end directs specific binding of HLTF to forks. DNase footprinting revealed that HLTF binds to the parental duplex ahead of the fork and at the leading edge behind the fork. Moreover, we found that the HIRAN domain is important for initiating regression of forks when both nascent strands are at the junction, but is dispensable when forks contain ssDNA regions on either template strand. We also found that HLTF catalyzes fork restoration from a partially regressed structure in a HIRAN-dependent manner. Thus, HIRAN serves as a substrate-recognition domain to properly orient the ATPase motor domain at stalled and regressed forks and initiates fork remodeling by guiding formation of a four-way junction. We discuss how these activities compare with those of two related fork remodelers, SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A-like 1 (SMARCAL1) and zinc finger RANBP2 type-containing 3 (ZRANB3) to provide insight into their nonredundant roles in DNA damage tolerance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据