4.4 Article

Stress-Induced, Highly Efficient, Donor Cell-Dependent Cell-to-Cell Natural Transformation in Bacillus subtilis

期刊

JOURNAL OF BACTERIOLOGY
卷 200, 期 17, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00267-18

关键词

Bacillus subtilis; natural transformation; cell-to-cell; donor cell; stress; natural strains

资金

  1. National Natural Science Foundation of China [31270145]
  2. National Fund for Fostering Talents of Basic Sciences [J1103513]
  3. Research (Innovative) Fund of Laboratory of Wuhan University

向作者/读者索取更多资源

Horizontal gene transfer (HGT) is a driving force for bacterial evolution that occurs via conjugation, transduction, and transformation. Whereas conjugation and transduction depend on nonbacterial vehicles, transformation is considered a naturally occurring process in which naked DNA molecules are taken up by a competent recipient cell. Here, we report that HGT occurred between two Bacillus subtilis strains cocultured on a minimum medium agar plate for 10 h. This process was almost completely resistant to DNase treatment and appeared to require close proximity between cells. The deletion of comK in the recipient completely abolished gene transfer, indicating that the process involved transformation. This process was also highly efficient, reaching 1.75 x 10(6) transformants/mu g DNA compared to 5.3 x 10(3) and 1.86 x 10(5) transformants/mu g DNA for DNA-to-cell transformation by the same agar method and the standard two-step procedure, respectively. Interestingly, when three distantly localized chromosomal markers were selected simultaneously, the efficiency of cell-to-cell transformation still reached 6.26 x 10(4) transformants/mu g DNA, whereas no transformants were obtained when free DNA was used as the donor. Stresses, such as starvation and exposure to antibiotics, further enhanced transformation efficiency by affecting the donor cells, suggesting that stress served as an important signal for promoting this type of HGT. Taken together, our results defined a bona fide process of cell-to-cell natural transformation (CTCNT) in B. subtilis and related species. This finding reveals the previously unrecognized role of donor cells in bacterial natural transformation and improves our understanding of how HGT drives bacterial evolution at a mechanistic level. IMPORTANCE Because DNA is easily prepared, studies of bacterial natural genetic transformation traditionally focus on recipient cells. However, such laboratory artifacts cannot explain how this process occurs in nature. In most cases, competence is only transient and involves approximately 20 to 50 genes, and it is unreasonable for bacteria to spend so many genetic resources on unpredictable and uncertain environmental DNA. Here, we characterized a donor cell-dependent CTCNT process in B. subtilis and related species that was almost completely resistant to DNase treatment and was more efficient than classical natural transformation using naked DNA as a donor, i.e., DNA-to-cell transformation, suggesting that DNA donor cells were also important in the transformation process in natural environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据