4.2 Article

Infrasound in the ionosphere from earthquakes and typhoons

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jastp.2017.07.022

关键词

Infrasound; Earthquake; Ionosphere; Nonlinear wave propagation; Typhoon; Remote sensing

资金

  1. Czech Science Foundation [15-07281J]

向作者/读者索取更多资源

Infrasound waves are observed in the ionosphere relatively rarely, in contrast to atmospheric gravity waves. Infrasound waves excited by two distinguished sources as seismic waves from strong earthquakes (M > 7) and severe tropospheric weather systems (typhoons) are discussed and analyzed. Examples of observation by an international network of continuous Doppler sounders are presented. It is documented that the co-seismic infra sound is generated by vertical movement of the ground surface caused by seismic waves propagating at supersonic speeds. The coseismic infrasound propagates nearly vertically and has usually periods of several tens of seconds far away from the epicenter. However, in the vicinity of the epicenter (up to distance about 1000-1500 km), the large amplitudes might lead to nonlinear formation of N-shaped pulse in the upper atmosphere with much longer dominant period, e.g. around 2 min. The experimental observation is in good agreement with numerical modeling. The spectral content can also be nonlinearly changed at intermediate distances (around 3000-4000 km), though the N-shaped pulse is not obvious. Infrasound waves associated with seven typhoons that passed over Taiwan in 2014-2016 were investigated. The infrasound waves were observed at heights approximately from 200 to 300 km. Their spectra differed during the individual events and event from event and covered roughly the spectral range 3.5-20 mHz. The peak of spectral density was usually around 5 mHz. The observed spectra exhibited fine structures that likely resulted from modal resonances. The infrasound was recorded during several hours for strong events, especially for two typhoons in September 2016.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据