4.8 Article

ZnSe•0.5N2H4 Hybrid Nanostructures: A Promising Alternative Photocatalyst for Solar Conversion

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 7, 期 3, 页码 1616-1623

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am507085u

关键词

ZnSe center dot 0.5N(2)H(4); inorganic-organic hybrid; photocatalysis; solar energy conversion

资金

  1. Ministry of Science and Technology of Republic of China (Taiwan) [NSC-102-2113-M-009-005-MY2, NSC-102-3113-P-009-002]

向作者/读者索取更多资源

As the molecular precursor of ZnSe, ZnSe center dot 0.5N(2)H(4) inorganic-organic hybrids have received relatively less attention due to the feasibility of their further processing and decomposition into pure-phase ZnSe. Here we demonstrated that ZnSe center dot 0.5N(2)H(4) hybrid nanostructures, which were prepared using a facile hydrazine-assisted hydrothermal method, may practically harvest solar energy for photoconversion applications. By modulating the volume ratio of hydrazine hydrate to deionized water employed in the synthesis, the morphology of the grown ZnSe center dot 0.5N(2)H(4) can be varied, which included nanowires, nanobelts and nanoflakes. With the relatively long exciton lifetime and highly anisotropic structure, ZnSe center dot 0.5N(2)H(4) nanowires performed much better in the photodegradation of rhodamine B than the other two counterpart products. As compared to pure ZnSe nanoparticles and single-phase ZnSe nanowires obtained from further processing ZnSe center dot 0.5N(2)H(4), the ZnSe center dot 0.5N(2)H(4) hybrid nanowires exhibited superior photocatalytic performance under visible light illumination. The hybrid nanowires were further decorated with Au particles to endow them with structural and compositional diversities. Time-resolved photoluminescence spectra suggested that almost 40% of the photoexcited electrons in ZnSe center dot 0.5N(2)H(4) nanowires can be transported to the decorated Au, which enabled a fuller extent of participation of charge carriers in the photocatalytic process and thus conduced to a significant enhancement in the photocatalytic activity. The demonstrations from this work illustrate that ZnSe center dot 0.5N(2)H(4) hybrid nanostructures can serve as a versatile photocatalyst platform for advanced photocatalytic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据