4.4 Article

Cauchy and Signaling Problems for the Time-Fractional Diffusion-Wave Equation

出版社

ASME
DOI: 10.1115/1.4026892

关键词

-

向作者/读者索取更多资源

In this paper, some known and novel properties of the Cauchy and signaling problems for the one-dimensional time-fractional diffusion-wave equation with the Caputo fractional derivative of order beta, 1 <= beta <= 2 are investigated. In particular, their response to a localized disturbance of the initial data is studied. It is known that, whereas the diffusion equation describes a process where the disturbance spreads infinitely fast, the propagation velocity of the disturbance is a constant for the wave equation. We show that the time-fractional diffusion-wave equation interpolates between these two different responses in the sense that the propagation velocities of the maximum points, centers of gravity, and medians of the fundamental solutions to both the Cauchy and the signaling problems are all finite. On the other hand, the disturbance spreads infinitely fast and the time-fractional diffusion-wave equation is nonrelativistic like the classical diffusion equation. In this paper, the maximum locations, the centers of gravity, and the medians of the fundamental solution to the Cauchy and signaling problems and their propagation velocities are described analytically and calculated numerically. The obtained results for the Cauchy and the signaling problems are interpreted and compared to each other.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据