4.3 Article

Crop classification from Sentinel-2-derived vegetation indices using ensemble learning

期刊

JOURNAL OF APPLIED REMOTE SENSING
卷 12, 期 2, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.JRS.12.026019

关键词

crop; random forests; Sentinel-2; stacking; support vector machine; vegetation index

向作者/读者索取更多资源

The identification and mapping of crops are important for estimating potential harvest as well as for agricultural field management. Optical remote sensing is one of the most attractive options because it offers vegetation indices and some data have been distributed free of charge. Especially, Sentinel-2A, which is equipped with a multispectral sensor (MSI) with blue, green, red, and near-infrared-1 bands at 10 m; red edge 1 to 3, near-infrared-2, and shortwave infrared 1 and 2 at 20 m; and 3 atmospheric bands (band 1, band 9, and band 10) at 60 m, offer some vegetation indices calculated to assess vegetation status. However, sufficient consideration has not been given to the potential of vegetation indices calculated from MSI data. Thus, 82 published indices were calculated and their importance were evaluated for classifying crop types. The two most common classification algorithms, random forests (RF) and support vector machine (SVM), were applied to conduct cropland classification from MSI data. Additionally, super learning was applied for more improvement, achieving overall accuracies of 90.2% to 92.2%. Of the two algorithms applied (RF and SVM), the accuracy of SVM was superior and 89.3% to 92.0% of overall accuracies were confirmed. Furthermore, stacking contributed to higher overall accuracies (90.2% to 92.2%), and significant differences were confirmed with the results of SVM and RF. Our results showed that vegetation indices had the greatest contributions in identifying specific crop types. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据