4.5 Article

Exercise induces muscle fiber type switching via transient receptor potential melastatin 2-dependent Ca2+ signaling

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 124, 期 2, 页码 364-373

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00687.2017

关键词

Ca2+ signaling; exercise; mitochondria; nuclear factor of activated T cells, cytoplasmic 1; skeletal muscle

资金

  1. Korean National Research Foundation Grant [2012R1A3A2026453]
  2. National Research Foundation of Korea [2012R1A3A2026453] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The aim of the present study was to examine whether transient receptor potential melastatin 2 (TRPM2) plays a role in muscle fiber-type transition during exercise. Mice were trained at a speed of 12 m/min at a slope of 0 degrees for 60 min for 5 consecutive days/wk for 4 wk. Exhaustion tests were performed on the treadmill (the speed was set at 6 m/min at a slope of 0 degrees and increased at a rate of 1 m/min every 6 min). Isolated primary skeletal muscle cells from TRPM2-knockout (KO) mice showed lower amplitudes of electrical stimuli (ES)-induced Ca2+ signals when compared with wild-type (WT) mice due to a defect in Ca2+ influx. Moreover, TRPM2-KO mice had a higher proportion of fast-twitch skeletal muscle fibers and a lower proportion of slow-twitch muscle fibers before exercise than WT mice. After exercise, the expression of slow-twitch skeletal muscle fibers was increased only in WT mice but not in TRPM2-KO mice. ES-induced nuclear translocation of the Ca2+-dependent transcription factor NFATc1 was significantly lower in TRPM2-KO mice than in WT mice. TRPM2-KO mice also showed decreased mitochondrial Ca2+ and membrane potential. Lactate levels were higher in the skeletal muscle cells of TRPM2-KO mice before and after ES compared with WT mice. Collectively, these data indicate that TRPM2-mediated Ca2+ signaling plays a critical role in the regulation of fiber-type switching and mitochondrial function in skeletal muscle. NEW & NOTEWORTHY TRPM2 has been shown to play an important role in a variety of cellular functions. However, the role of TRPM2 in skeletal muscle remains poorly understood. Here, we provide evidence that TRPM2-mediated Ca2+ signaling is required for training-induced improvement in skeletal muscle mitochondrial function and fiber type transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据