4.5 Article

A Model of Genome Size Evolution for Prokaryotes in Stable and Fluctuating Environments

期刊

GENOME BIOLOGY AND EVOLUTION
卷 7, 期 8, 页码 2344-2351

出版社

OXFORD UNIV PRESS
DOI: 10.1093/gbe/evv148

关键词

individual-based model; prokaryotic genome; extinction; evolvability; global change; genome size optimization

资金

  1. Lord Zuckerman Phd studentship (UEA)
  2. NERC [NE/K004530/1]
  3. School of Environmental Sciences, University of East Anglia
  4. NERC [NE/K004530/1] Funding Source: UKRI
  5. Natural Environment Research Council [NE/K004530/1] Funding Source: researchfish

向作者/读者索取更多资源

Temporal variability in ecosystems significantly impacts species diversity and ecosystem productivity and therefore the evolution of organisms. Different levels of environmental perturbations such as seasonal fluctuations, natural disasters, and global change have different impacts on organisms and therefore their ability to acclimatize and adapt. Thus, to understand how organisms evolve under different perturbations is a key for predicting how environmental change will impact species diversity and ecosystem productivity. Here, we developed a computer simulation utilizing the individual-based model approach to investigate genome size evolution of a haploid, clonal and free-living prokaryotic population across different levels of environmental perturbations. Our results show that a greater variability of the environment resulted in genomes with a larger number of genes. Environmental perturbations were more effectively buffered by populations of individuals with relatively large genomes. Unpredictable changes of the environment led to a series of population bottlenecks followed by adaptive radiations. Our model shows that the evolution of genome size is indirectly driven by the temporal variability of the environment. This complements the effects of natural selection directly acting on genome optimization. Furthermore, species that have evolved in relatively stable environments may face the greatest risk of extinction under global change as genome streamlining genetically constrains their ability to acclimatize to the new environmental conditions, unless mechanisms of genetic diversification such as horizontal gene transfer will enrich their gene pool and therefore their potential to adapt.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据