4.5 Article

B-Splines and NURBS Based Finite Element Methods for Strained Electronic Structure Calculations

出版社

ASME
DOI: 10.1115/1.4040454

关键词

-

资金

  1. Kuwait University [12-40205]
  2. [NAS 7251-05-005]

向作者/读者索取更多资源

This paper presents B-splines and nonuniform rational B-splines (NURBS)-based finite element method for self-consistent solution of the Schrodinger wave equation (SWE). The new equilibrium position of the atoms is determined as a function of evolving stretching of the underlying primitive lattice vectors and it gets reflected via the evolving effective potential that is employed in the SWE. The nonlinear SWE is solved in a self-consistent fashion (SCF) wherein a Poisson problem that models the Hartree and local potentials is solved as a function of the electron charge density. The complex-valued generalized eigenvalue problem arising from SWE yields evolving band gaps that result in changing electronic properties of the semiconductor materials. The method is applied to indium, silicon, and germanium that are commonly used semiconductor materials. It is then applied to the material system comprised of silicon layer on silicon-germanium buffer to show the range of application of the method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据