4.7 Article

Resolution of dynamic MDR structures among the plasmidome of Salmonella using MinION single-molecule, long-read sequencing

期刊

JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY
卷 73, 期 10, 页码 2691-2695

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jac/dky243

关键词

-

资金

  1. Collaborative Research Fund of Hong Kong Research Grant Council [C5026-16G]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  3. Yangzhou University [137011318]

向作者/读者索取更多资源

Background: ISCR1 is an important mobile genetic element mediating the transfer of antibiotic resistance genes. Genetic diversity regarding distribution and copy numbers of ISCR1 within a bacterial population derived from an ancestral strain, which may reflect the degree of genetic plasticity conferred by such an element, has not been studied. Objectives: To investigate the plasmid heterogeneity in Salmonella conferred by ISCR1. Methods: Nanopore long-read and other sequencing technologies were used to resolve the structures harbouring different copies of ISCR1-qnrB6 from the perspective of single molecules. Results: Salmonella London Sa128 was positive for ISCR1-qnrB6 and harboured an MDR-encoding conjugative IncF plasmid, pSa128, containing a complex class 1 integron. The plasmid pSa128T from the transconjugant was larger compared with the original plasmid pSa128, presumably due to amplification of ISCR1-qnrB6. Single-molecule, long-read analysis indicated that both plasmids in the donor and transconjugant strains were in a heterogeneous state that contains variable numbers of ISCR1-qnrB6, with four and eight copies in single plasmids being the dominant types. This type of plasmid heterogeneity in populations of one strain can be regarded as an atypical plasmidome. Conclusions: This study highlights the importance of investigation of a single plasmid structure based on longread sequencing technologies, with a focus on analysing the complex structures of the MDR region, which is expected to exhibit genetic polymorphism or plasmid heterogeneity in various MDR-encoding elements even among members of the same strain. The availability of a single-molecule sequencing technique represents a paradigmshift in the capability of performing population genetic analysis of antibiotic-resistant organisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据