4.7 Article

A novel sample cell for reducing the Position Effect in laser ablation MC-ICP-MS isotopic measurements

期刊

JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY
卷 33, 期 9, 页码 1571-1578

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ja00083b

关键词

-

资金

  1. National Natural Science Foundation of China [41473012, 41521062, 41525012]

向作者/读者索取更多资源

A novel laser ablation cell geometry significantly reduces the so-called position effect on high precision and accuracy isotopic measurements by Laser Ablation-Multiple Collector-Inductively Coupled Plasma-Mass Spectrometry (LA-MC-ICP-MS). The peak shape, amplitude and pulse duration of the Fe-56 signal for a single laser shot at the carrier gas flow rate in a range from 0.85 to 1.4 L min(-1) were studied, and then twelve analytical areas in the sample cell were selected to assess the homogeneity of aerosol transport efficiency in response to a single laser shot under optimized gas flow conditions. To further investigate whether position effects occur in the new cell, the Fe isotopic composition of Balmat pyrite was measured with extreme separation distances between the sample' and standard' in horizontal and vertical carrier gas flow directions in two gas flow rate scenarios. The results show that the position effect on Fe isotopic ratios is obvious at a flow rate of 0.85 L min(-1). Nevertheless, the position effect is negligible at a flow rate of 1.00 L min(-1). The Fe isotopic composition of in-house reference pyrite sample H1 is determined with Fe-56 and Fe-57 values of -0.11 +/- 0.20 (2SD, n = 24) and -0.19 +/- 0.40 (2SD, n = 24), respectively. These results are consistent with those measured by MC-ICP-MS solution methods (95% confidence interval). We conclude that the new sample cell can be extensively applied for high precision and accuracy LA-MC-ICP-MS stable isotope analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据