4.7 Article

Self-doping of Ti3+ into Na2Ti3O7 increases both ion and electron conductivity as a high-performance anode material for sodium-ion batteries

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 767, 期 -, 页码 820-828

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2018.07.186

关键词

Na2Ti3O7; Sodium-ion batteries; Self-doping; Conductivity; Anode materials

资金

  1. National Nature Science Foundation of China [51102010, 21336003, 21371021]
  2. National Key Research Program of China [2016YFB0901500]
  3. Science and Technology Commission of Shanghai Municipality [14DZ2261000]

向作者/读者索取更多资源

As a safe, low-voltage anode material, in recent years, Na2Ti3O7 has become regarded as a highly alternative negative material for high energy room-temperature sodium ion batteries. However, its poor ion and electron conductivity produces very poor electrochemical performance of Na2Ti3O7, therefore greatly limiting its practical application in future scalable utilization. We report here a self-doping of Ti3+ into the Na2Ti3O7 electrode material, through a very simple post heat-treatment process, that is, annealing the Na2Ti3O7 precursor at an argon atmosphere containing 5% H-2. By XPS characterization, it is confirmed that Ti3+ is successfully doped into Na2Ti3O7. Benefiting from this self-doped Ti3+ with larger ionic radius and better electronic conductivity, the obtained Na2Ti3O7 demonstrates improved electron conductivity and ion diffusion properties. Combined with a carbon coating, this self-doped Na2Ti3O7 electrode material exhibits superior electrochemical performance to that of non-doped electrode, e.g., this Na2Ti3O7 sample could delivers a specific capacity of 187.8 and 51.9 mAh g(-1) from 0.1C to 10C at various rate of discharge, respectively. When recycled back to 0.1C, it can still reach 153 mAh g(-1). Compared with numerous reported nanoscale means, we believe this approach is practical and productive, and may extend to other ti-based electrode materials. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据