4.7 Article

High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 758, 期 -, 页码 62-71

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2018.05.130

关键词

MoS2 nanosheets; Graphene; Microwave absorption properties; Isomorphic hetero-structures; Electromagnetic waves

资金

  1. National Natural Science Foundation of China [51272110, 51772160, 51771123]
  2. Guangdong Provincial Natural Science Foundation of China [2015A030313543]
  3. dsl [YJSCX2016-ZD14]

向作者/读者索取更多资源

Two-dimensional (2D) nanomaterials have become a new class of microwave absorption (MA) materials due to their high specific surface area and peculiar electronic properties. In this study, MoS2/graphene 2D hybrid nanosheets with isomorphic hetero-structures are prepared by liquid exfoliation and hydrothermal reaction. Their chemical composition and morphology are characterized and their MA properties are also investigated comprehensively. The minimum reflection loss (RL) value of an absorber containing wax and 20 wt% MoS2/graphene hybrid nanosheets (MoS2/GN) is -55.3 dB at a thickness of only 1.6 mm. The largest effective absorption bandwidth is up to 5.6 GHz for an absorber containing wax and 15 wt% MoS2/GN at a thickness of 2.2 mm. The enhanced MA performance of MoS2/GN is attributed to the high electrical conductivity of graphene and the multiple MoS2/graphene interfaces in the heterogeneous structures. The results suggest that those light-weight MoS2/graphene hybrid nanosheets are very promising materials for electromagnetic wave absorbing, which can exhibit broad effective absorption bandwidth in the absorber containing low loadings of MA materials at a small thickness. Besides, the facile preparation of MoS2/graphene hybrid nanosheets reported in this work provides a feasible and effective approach in the synthesis of high-performance 2D MA nanomaterials. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据