4.7 Article

L10 -FeNi ordered phase in AC electrodeposited iron-nickel biphasic nanowires

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 766, 期 -, 页码 373-381

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2018.06.307

关键词

Fe-Ni polycrystalline nanowires; AC electrodeposition; Magnetization mechanisms; L1(0) FeNi phase

资金

  1. SeCyT-UNC Argentina
  2. FonCyT Argentina
  3. CONICET Argentina

向作者/读者索取更多资源

Nanowire arrays with nominal composition FexNi100-x (x = 0, 18, 53, 93, 100) have been synthesized by AC electrodeposition into the cylindrical pores of alumina templates. Except for the composition Fe53Ni47, nanowires are single-phase, consisting of small grains of the Al-FeNi disordered phase. Near the equiatomic nominal composition nanowires are biphasic, consisting of grains of the Al-FeNi disordered phase (gamma-FeNi phase) as well as grains of the L1(0)-FeNi ordered phase (gamma-FeNi phase). Even in nanowires with high Fe content the alpha-Fe bcc phase is absent. The coercive field and reduced remanence dependences on composition are non monotonic but go through a local maximum near the equiatomic composition. Biphasic nanowires behave as a magnetic single phase, exhibiting a unique switching field for polarization reversal in the entire range between 5 K and 300 K. The linear dependence of the coercive field on temperature and the dependence of the coercive field on the angle between the nanowire long axis and the applied field are consistent with a polarization reversal mechanism controlled by the nucleation by curling and expansion of inverse domains, assisted by thermal fluctuations and the applied field. The effective uniaxial anisotropy resulting from these measurements suggests that the shape anisotropy makes a small contribution to the high coercive field observed (170 mT). The effective uniaxial magnetocrystalline constant measured at room temperature, 130-170 k Jm(-3), may be explained by considering nucleation at favorable sites in an exchange-hardened gamma-FeNi soft phase. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据