4.7 Article

Fault diagnosis of rolling bearings with recurrent neural network based autoencoders

期刊

ISA TRANSACTIONS
卷 77, 期 -, 页码 167-178

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.isatra.2018.04.005

关键词

Fault diagnosis; Recurrent neural networks; Gated recurrent unit; Nonlinear predictive denoising autoencoders

资金

  1. National Natural Science Foundation of China [91547208, 51579107, 51239004, 51479076]

向作者/读者索取更多资源

As the rolling bearings being the key part of rotary machine, its healthy condition is quite important for safety production. Fault diagnosis of rolling bearing has been research focus for the sake of improving the economic efficiency and guaranteeing the operation security. However, the collected signals are mixed with ambient noise during the operation of rotary machine, which brings great challenge to the exact diagnosis results. Using signals collected from multiple sensors can avoid the loss of local information and extract more helpful characteristics. Recurrent Neural Networks (RNN) is a type of artificial neural network which can deal with multiple time sequence data. The capacity of RNN has been proved outstanding for catching time relevance about time sequence data. This paper proposed a novel method for bearing fault diagnosis with RNN in the form of an autoencoder. In this approach, multiple vibration value of the rolling bearings of the next period are predicted from the previous period by means of Gated Recurrent Unit (GRU)-based denoising autoencoder. These GRU-based non-linear predictive denoising autoencoders (GRU-NP-DAEs) are trained with strong generalization ability for each different fault pattern. Then for the given input data, the reconstruction errors between the next period data and the output data generated by different GRU-NP-DAEs are used to detect anomalous conditions and classify fault type. Classic rotating machinery datasets have been employed to testify the effectiveness of the proposed diagnosis method and its preponderance over some state-of-the-art methods. The experiment results indicate that the proposed method achieves satisfactory performance with strong robustness and high classification accuracy. (C) 2018 ISA. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据