4.6 Article

An efficient model for the frictional contact between two multiferroic bodies

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2017.10.004

关键词

Multiferroic materials; Frictional contact; Semi-analytical modeling; Multifield coupling

资金

  1. National Nature Science Foundation of China [11672252, 51775457, 51775458]
  2. China Scholarship Council

向作者/读者索取更多资源

This paper presents a semi-analytical model (SAM) for three-dimensional frictional magnetoelectroelastic (MEE) contact of two multiferroic bodies, together with a set of effective solution methods. The frequency response functions (FRFs) for the MEE fields in a multiferroic half-space are analytically derived with respect to a unit concentrated normal force, a unit concentrated tangential force, a unit electric charge, and/or a unit magnetic charge, which are then converted into the results of continuous Fourier transforms of the influence coefficients (ICs), followed by the discrete Fourier transforms with a proper aliasing treatment. The conjugate gradient method (CGM) is used to obtain the unknown distributed pressure. Furthermore, the discrete convolution-fast Fourier transform (DC-FFT) algorithm is implemented to calculate the in-plane electric/magnetic potentials and subsurface stresses. The model is implemented to analyze the frictional sliding contact between a half-space and a sphere, and to study the coupled effects of surface electric/magnetic charges and friction on contact behaviors, including pressure, stresses, and electric/magnetic potentials. A sensitivity analysis is also conducted to evaluate the influences of friction and material properties on the contact-induced multifield coupling behaviors. A number of case studies are committed, and the results indicate that electric/magnetic charge densities and the friction coefficient strongly influence the contact pressure, stress, and electric potential. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据