4.7 Article

Multiple slip dislocation patterning in a dislocation-based crystal plasticity finite element method

期刊

INTERNATIONAL JOURNAL OF PLASTICITY
卷 100, 期 -, 页码 104-121

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2017.09.015

关键词

Dislocations; Dislocation-based crystal plasticity; Fatigue; Finite element method

资金

  1. Swiss National Science Foundation [138240]
  2. Deutsche Forschungsgemeinschaft [SA 2251/2-1]

向作者/读者索取更多资源

Dislocation structures forming during cyclic loading of fcc metals are fatigue damage precursors. Their specific structures are caused by the motion and interactions of dislocations. Depending on the load conditions, the grain orientation, the stacking fault energy, a variety of different dislocation structures appear in the material such as labyrinths, cells, veins and persistent slip bands. We present a continuum dislocation-based model for cyclic fatigue and incorporate it into a crystal plasticity finite element solver. A method for the simulation of dislocation junction formation is introduced, which reproduces the behaviour of discrete objects, such as dislocations, in a continuum framework. The formation of dislocation walls after 50 and 100 deformation cycles at 0.95% and 0.65% strain amplitude starting from an initial random dislocation distribution is predicted for < 001 > and < 1 (1) over bar0 > oriented crystals. Simulations and cyclic tension-compression experiments of polycrystalline 316L stainless steel are performed to compare our model with another model based on edge and screw dislocation densities. The simulated dislocation structures and experimental results, obtained with the electron channeling contrast imaging technique, are compared using a 2D orientation distribution function of the dislocation structures. The dominant orientation of dislocation walls is predicted by the new model; it turns out to be perpendicular to the intersection line between the two slip planes involved in their formation and at an angle of around 45 degrees from the loading axis. This agrees well with the experimental observations and represents a step forward for understanding the formation mechanism of these dislocation structures. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据