4.7 Article

Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(L-lactic acid) scaffolds for bone defect repair

期刊

INTERNATIONAL JOURNAL OF NANOMEDICINE
卷 13, 期 -, 页码 1707-1721

出版社

DOVE MEDICAL PRESS LTD
DOI: 10.2147/IJN.S154605

关键词

Sr-HA; PLLA porous scaffold; biomimetic mineralization; bone repair

资金

  1. National Natural Science Foundations of China [31470961, 21271059, 21301046, 51302062]
  2. Hebei Province Hundred Talents Program [BR2-202]
  3. Hebei Province Three Three Three Talents Program [A201401002]
  4. Natural Science Foundation of Hebei Province [B2016201209]

向作者/读者索取更多资源

Introduction: Poly(L-lactic acid) (PLLA) has been approved for clinical use by the US Food and Drug Administration (FDA); however, their stronger hydrophobicity and relatively fast degradation rate restricted their widespread application. In consideration of the composition of bone, the inorganic-organic composite has a great application prospect in bone tissue engineering. Many inorganic-organic composite scaffolds were prepared by directly mixing the active ingredient, but this method is uncontrolled and will lead to lack of homogeneity in the polymer matrix. Strontium (Sr) is an admirable addition to improve the bioactivity and bone induction of hydroxyapatite (HA). To our knowledge, the application of biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) (Sr-HA/PLLA) scaffolds for bone defect repair has never been reported till date. Biomimetic mineralized Sr-HA/PLLA porous scaffold was developed in this study. The results indicated that the Sr-HA/PLLA porous scaffold could improve the surface hydrophobicity, reduce the acidic environment of the degradation, and enhance the osteoinductivity; moreover, the ability of protein adsorption and the modulus of compression were increased. The results also clearly showed the effectiveness of the Sr-HA/PLLA porous scaffold in promoting cell adhesion, proliferation, and alkaline phosphatase (ALP) activity. The micro computed tomography (micro-CT) results showed that more new bones were formed by Sr-HA/PLLA porous scaffold treatment. The histological results confirmed the osteoinductivity of the Sr-HA/PLLA porous scaffold. The results suggested that the Sr-HA/PLLA porous scaffold has a good application prospect in bone tissue engineering in the future. Purpose: The purpose of this study was to promote the bone repair. Materials and methods: Surgical operation of rabbits was carried out in this study. Results: The results showed that formation of a large number of new bones by the Sr-HA/PLLA porous scaffold treatment is possible. Conclusion: Biomimetic mineralized Sr-HA/PLLA porous scaffold could effectively promote the restoration of bone defects in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据