4.7 Article

Polysaccharide-modified nanoparticles with intelligent CD44 receptor targeting ability for gene delivery

期刊

INTERNATIONAL JOURNAL OF NANOMEDICINE
卷 13, 期 -, 页码 3989-4002

出版社

DOVE MEDICAL PRESS LTD
DOI: 10.2147/IJN.S163149

关键词

hyaluronic acid; chondroitin sulfate; poly(lactide-co-glycolide)

资金

  1. Ministry of Science and Technology in Taiwan

向作者/读者索取更多资源

Background: Hyaluronic acid (HA) and chondroitin sulfate (CD) are endogenous polysaccharides. In recent years, they have aroused the interest of scientists because of specific binding to CD44 receptors, which are overexpressed in several types of tumors. Methods: In this study, HA-and CD-modified poly(D, L-lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymers were synthesized and applied to encapsulate 1,2-Dioleoyl-3-trimethylammonium-propane (DOTAP)/pDNA (D/P) lipoplex as CD44 receptor targeting gene delivery nanoparticles (NPs). Results: The particle size of CD-PEG-PLGA-D/P (186.8 +/- 21.7 nm) was smaller than that of HA-PEG-PLGA-D/P (270.2 +/- 13.8 nm), with narrow size distribution, and both HA-PEG-PLGA-D/P NPs and CD-PEG-PLGA NPs possessed negative zeta potentials (-39.63 +/- 5.44 mV and -38.9 +/- 2.0 mV, respectively), which prevent erythrocytes from agglutination. Both NPs exhibited pH-dependent release and had faster release in pH 4.0 than in pH 7.4. Generally, the CD-PEG-PLGA-D/P NPs possessed less cytotoxicity than HA-PEG-PLGA-D/P NPs. The D/P-loaded HA-PEG-PLGA and CD-PEG-PLGA NPs expressed significantly higher transfection in CD44 high-expressed U87 (30.1% +/- 2.1% and 40.7% +/- 4.3%, respectively) than in CD44-negative HepG2 (3.3% +/- 1.5% and 1.4% +/- 1.0%, respectively) (p < 0.001). It was revealed that the endocytosis of HA-PEG-PLGA-D/P NPs was majorly dominated by macropinocytosis and the endocytosis of CD-PEG-PLGA-D/P NPs was dominated by clathrin-mediated endocytosis pathway (p < 0.001). Conclusion: The high selectivity to CD44-positive U87 cancer cells and low cytotoxicity in L929 normal cells assured the promising potential of CD-PEG-PLGA NPs as gene delivery nano-carriers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据