4.7 Article

Effect of Temperature Changes on Serum Protein Adsorption on Thermoresponsive Cell-Culture Surfaces Monitored by A Quartz Crystal Microbalance with Dissipation

期刊

出版社

MDPI
DOI: 10.3390/ijms19051516

关键词

thermoresponsive polymer; poly(N-isopropylacrylamide); quartz crystal microbalance; thermoresponsive cell culture surface; cell sheet

资金

  1. Japan Society for the Promotion of Science (JSPS)
  2. Organization of Cell Sheet Tissue Engineering and Regenerative Medicine Initiatives, Tokyo, Japan
  3. JSPS KAKENHI [15K01317]
  4. Grants-in-Aid for Scientific Research [15K01317] Funding Source: KAKEN

向作者/读者索取更多资源

Thermoresponsive cell-culture polystyrene (PS) surfaces that are grafted with poly(N-isopropylacrylamide) (PIPAAm) facilitate the cultivation of cells at 37 degrees C and the detachment of cultured cells as a sheet with an underlying extracellular matrix (ECM) by reducing the temperature. However, the ECM and cell detachment mechanisms are still unclear because the detachment of cells from thermoresponsive surfaces is governed by complex interactions among the cells/ECM/surface. To explore the dynamic behavior of serum protein adsorption/desorption, thermoresponsive surfaces that correspond to thermoresponsive tissue-culture PS dishes were formed on sensor chips for quartz crystal microbalance with dissipation (QCM-D) measurements. X-ray photoelectron spectroscopy (XPS) measurements and temperature-dependent frequency and dissipation shifts, f and D, using QCM-D revealed that the thermoresponsive polymers were successfully grafted onto oxidized, thin PS films on the surfaces of the sensor chips. Increased amounts of adsorbed bovine serum albumin (BSA) and fibronectin (FN) were observed on the thermoresponsive polymer-grafted surfaces at 37 degrees C when compared with those at 20 degrees C because of enhanced hydrophobic interactions with the hydrophobic, thermoresponsive surface. While the calculated masses of adsorbed BSA and FN using QCM-D were 3-5 times more than those that were obtained from radiolabeling, the values were utilized for relative comparisons among the same substrate. More importantly, the thermoresponsive, dynamic behavior of serum protein adsorption/desorption was monitored using the QCM-D technique. Observations of this dynamic behavior revealed that the BSA and FN that were adsorbed at 37 degrees C remained on both surfaces after decreasing the temperature to 20 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据