4.7 Article

Tauroursodeoxycholic Acid Protects against the Effects of P-Cresol-Induced Reactive Oxygen Species via the Expression of Cellular Prion Protein

期刊

出版社

MDPI
DOI: 10.3390/ijms19020352

关键词

mesenchymal stem cells; P-cresol; tauroursodeoxycholic acid; cellular prion protein; reactive oxygen species

资金

  1. Soonchunhyang University Research Fund
  2. National Research Foundation - Korean government [NRF-2016R1D1A3B01007727, 2017M3A9B4032528]
  3. National Research Foundation of Korea [2017M3A9B4032528] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Mesenchymal stem cells (MSCs) could be a promising solution in the treatment of various diseases including chronic kidney disease (CKD). However, endoplasmic reticulum (ER) stress induced by ischemia in the area of application limits the integration and survival of MSCs in patients. In our study, we generated ER stress-induced conditions in MSCs using P-cresol. As P-cresol is a toxic compound accumulated in the body of CKD patients and induces apoptosis and inflammation through reactive oxygen species (ROS), we observed ER stress-induced MSC apoptosis activated by oxidative stress, which in turn resulted from ROS generation. To overcome stress-induced apoptosis, we investigated the protective effects of tauroursodeoxycholic acid (TUDCA), a bile acid, on ER stress in MSCs. In ER stress, TUDCA treatment of MSCs reduced ER stress-associated protein activation, including GRP78, PERK, eIF2, ATF4, IRE1, and CHOP. Next, to explore the protective mechanism adopted by TUDCA, TUDCA-mediated cellular prion protein (PrPC) activation was assessed. We confirmed that PrPC expression significantly increased ROS, which was eliminated by superoxide dismutase and catalase in MSCs. These findings suggest that TUDCA protects from inflammation and apoptosis in ER stress via PrPC expression. Our study demonstrates that TUDCA protects MSCs against inflammation and apoptosis in ER stress by PrPC expression in response to P-cresol exposure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据