4.6 Article

Effect of electro-acupuncture on the BDNF-TrkB pathway in the spinal cord of CCI rats

期刊

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE
卷 41, 期 6, 页码 3307-3315

出版社

SPANDIDOS PUBL LTD
DOI: 10.3892/ijmm.2018.3563

关键词

electro-acupuncture; brain-derived neurotrophic factor; tyrosine kinase receptor B; spinal cord; chronic constriction injury

资金

  1. Natural Science Foundation of Zhejiang Province [LY16H270016]
  2. Foundation of Wenzhou Scientific and Technological Bureau Project [Y20140221]

向作者/读者索取更多资源

Microglia, which comprise a sensor for pathological events in the central nervous system, may be triggered by nerve injury and transformed from a quiescent state into an activated state; ionised calcium binding adaptor molecule 1 (Iba1) is a sensitive marker associated with activated microglia. Accumulated evidence suggests that spinal activated microglia and the brain-derived neurotrophic factor (BDNF)-tyrosine kinase receptor B (TrkB) signalling pathway play major roles in the production and development of neuropathic pain. Electro-acupuncture (EA) has a positive effect on relieving chronic neuropathic pain; however, the underlying mechanisms remain unclear. To determine the significance of EA in the treatment of neuropathic pain mediated by activated microglia and the BDNF-TrkB signalling pathway in the spinal cord, the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) values were recorded to assess hyperalgesia and allodynia. In addition, the amount of activated microglia and BDNF were assessed via immunofluorescence. Iba1, BDNF and TrkB mRNA expression levels were examined using qPCR; the protein levels of BDNF, p-TrkB and TrkB in the spinal cord were analysed via western blotting. The present study demonstrated that EA treatment increased the MWT and TWL values. EA significantly inhibited the proportion of activated microglia and BDNF expression in the spinal cord after chronic constrictive injury (CCI). Furthermore, EA decreased the expression of BDNF and TrkB at both the mRNA and protein levels in the spinal cord of CCI rats. These findings suggest that the analgesic effect of EA may be achieved by inhibiting the activation of spinal microglia and subsequently blocking the BDNF-TrkB signalling pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据