4.7 Article

A new physics-based model for equilibrium saturation determination in binder jetting additive manufacturing process

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijmachtools.2017.09.001

关键词

Binder jetting process; Additive manufacturing; Saturation; Equilibrium; Modeling

资金

  1. Rapid Prototyping Center (RPC) at University of Louisville

向作者/读者索取更多资源

In binder jetting additive manufacturing (BJ-AM) process, the features are created through the interaction between droplets of the liquid binding agent and the layered powder bed. The amount of binder, which is termed binder saturation, depends strongly on the liquid binder and powder bed interaction including the spreading (i.e. lateral migration) and penetration (vertical migration) of the binder in powder bed, and is of crucial importance for determining the accuracy and strength of the printed parts. In the present study, a new physics-based model is developed to predict the optimal saturation levels for the green part printing, which is realized via capillary pressure estimation that is based on the binder and powder bed interactions in the equilibrium state. The proposed model was evaluated by both the Ti-6Al-4V and 420 stainless steel powders that exhibit different powder characteristics and packing densities. In order to estimate the equilibrium saturation using the proposed model, the physical characteristics such as average contact angle between the binder and powder material, specific surface area of powder particles, saturation and capillary pressure characterization curve were determined. Features with various degrees of dimensions (1-D, 2-D, 3-D) were printed out using M-Lab ExOne printer for determining the equilibrium saturation. Good agreement was observed between the theoretical predictions and experimentally measured saturation levels for the Ti-6Al-4V powder. On the other hand, the model underestimated the optimal saturation level for the 420 stainless steel powder, which was likely caused by the micro-surface areas from powder particle surface that do not contribute to the binder-powder bed interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据