4.7 Article

Shape effect of cavity flameholder on mixing zone of hydrogen jet at supersonic flow

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 43, 期 33, 页码 16364-16372

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2018.06.166

关键词

Computational fluid dynamics; Mixing efficiency; Scramjets; Hydrogen mixing; Cavity flameholder

向作者/读者索取更多资源

Cavity flameholder is known as an efficient technique for providing the ignition zone. In this research, computational fluid dynamic is applied to study the influence of the various shapes of cavity as flameholder on the mixing efficiency inside the scramjet. To evaluate different shapes of cavity flame holder, the Reynolds-averaged Navier-Stokes equations with (SST) turbulence model are solved to reveal the effect of significant parameters. The influence of trapezoidal, circle and rectangular cavity on fuel distribution is expansively analyzed. Moreover, the influence of various Mach numbers (M = 1.2, 2 and 3) on mixing rate and flow feature inside the cavity is examined. The comprehensive parametric studies are also done. Our findings show that the trapezoidal cavity is more efficient than other shapes in the preservation of the ignition zone within the cavity. In addition, the increase of free stream Mach number intensifies the main circulations within cavity and this induces a stable ignition zone within cavity. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据