4.7 Article

Enhancing sinterability and electrochemical properties of Ba(Zr0.1Ce0.7Y0.2)O3-δ proton conducting electrolyte for solid oxide fuel cells by addition of NiO

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 43, 期 29, 页码 13501-13511

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2018.05.089

关键词

Proton conductor; NiO; Electrochemical performance; Sintering aid; SOFC

资金

  1. National Science Foundation of China (NSFC) [91745203, U1601207]
  2. Special Funds of Guangdong Province Public Research and Ability Construction [2014A010106008]
  3. Guangdong Innovative and Entrepreneurial Research Team Program [2014ZT05N200]

向作者/读者索取更多资源

The influence of NiO on the sintering behavior and electrical properties of proton conducting Ba(Zr0.1Ce0.7Y0.2)(03-delta) (BZCY7) as an electrolyte supporter for solid oxide fuel cells is systematically investigated. SEM images and shrinkage curve demonstrate that the sinterability of the electrolyte pellets is dramatically improved by doping Ni0 as a sintering aid. The sintering aid amount and sintering temperature are optimized by analyzing the linear shrinkage, grain size and morphology for a series of sintered BZCY7 electrolyte pellets. Almost full dense electrolyte pellets are successfully formed by using 0.5-1.0 wt% NiO loading after sintering at 1400 degrees C for 6 h. The linear shrinkage of 0.5 wt% NiO modified BZCY7 sample is about 14.25% higher than that without NiO addition (4.81%). Energy dispersive X-ray spectroscopy analysis indicate that partial NiO might dissolve into the perovskite lattice structure and the other NiO react with BZCY7 to form BaY2NiO5 secondary phase as a sintering aid. Excessive NiO is especially detrimental to the electrical properties of BZCY7 and thus lower the open circuit voltage. The electrochemical performance for a series of single cells with different concentration NiO modified BZCY7 electrolyte are measured and analyzed. The optimized composition of 0.5 wt% NiO modified BZCY7 as an electrolyte support for solid oxide fuel cell demonstrates a high electrochemical performance. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据