4.7 Article

Platinum-Iron nanoparticles supported on reduced graphene oxide as an improved catalyst for methanol electro oxidation

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 43, 期 12, 页码 6107-6116

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2018.01.206

关键词

Anode catalyst; Direct methanol fuel cell; Platinum; Iron; Reduced graphene oxide

资金

  1. Hydrogen and Fuel Cell Research Laboratory, Department of chemistry, Yasouj University

向作者/读者索取更多资源

Platinum Iron nanoparticles supported on reduced graphene oxide powder are synthesized by chemical reduction method as an anode catalyst for the methanol electro oxidation. The characterization of the catalyst has been investigated using physical and electrochemical methods. Prepared catalyst was characterized by scanning electron microscopy (SEM), TEM (Transmission electron microscopy), FT-IR (Fourier-transform infrared spectroscopy), Raman spectroscopy and, X-ray diffraction (XRD) and energy dispersive analysis of X-ray (EDX). Pt and Pt-Fe nanoparticles are uniformly dispersed on the surface of reduced graphene oxide (rGO) powder nanocomposite support. The catalytic properties of the catalyst for methanol electro-oxidation were thoroughly studied by electrochemical methods that involved in the cyclic voltammetry, linear sweep voltammetry (LSV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The Pt-Fe/rGo exhibits high electrocatalytic activity, catalyst tolerance for the CO poisoning and catalyst durability for electro-oxidation of methanol compared to the Pt/rGo and commercial Pt/C catalyst. Therefore, the Pt-Fe/rGo catalyst is a good choice for application in direct methanol fuel cells. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据