4.7 Article

In-situ investigation of bubble dynamics and two-phase flow in proton exchange membrane electrolyzer cells

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 43, 期 24, 页码 11223-11233

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2018.05.006

关键词

Proton exchange membrane electrolyzer cell; Rapid bubble dynamics; Two-phase flow; Electrochemical reaction; Microchannel

资金

  1. U.S. Department of Energy's National Energy Technology Laboratory [DE-FE0011585]

向作者/读者索取更多资源

Gas bubble dynamics and two-phase flow have a significant impact on the performance and efficiency of proton exchange membrane electrolyzer cells (PEMECs). It has been strongly desired to develop an effective experimental method for in-situ observing the high-speed/micro-scale oxygen bubble dynamics and two-phase flow in an operating PEMEC. In this study, the micro oxygen bubble dynamic behavior and two-phase flow are in-situ visualized through a high-speed camera coupled with a specific designed transparent PEMEC, which uses a novel thin liquid/gas diffusion layer (LGDL) with straight-through pores. The effects of different operating conditions on oxygen bubble dynamics, including nucleation, growth, and detachment, and two-phase flow have been comprehensively investigated. The results show that temperature and current density have great effects on bubble growth rate and reaction sites while the influence of flow rate is very limited. The number, growth rate, nucleation site, and slug flow regime of oxygen gas bubbles increase as temperature and/or current density increases, which indicates that an increase in temperature and/or current density can enhance the oxygen production efficiency. Further, a mathematical model for the bubble growth is developed to evaluate the effects of temperature and current density on the bubble dynamics. A mathematical model has been established and shows a good correlation with the experimental results. The studies on two-phase flow and high-speed micro bubble dynamics in the microchannel will help to discover the true electrochemical reaction at micro-scale in an operating PEMEC. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据