4.7 Article

Effects of surface coating with Cu-Pd on electrochemical properties of A2B7- type hydrogen storage alloy

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 43, 期 6, 页码 3244-3252

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2017.12.078

关键词

Hydrogen storage alloy; MH/Ni battery; Cu-Pd coating; Electrochemical performance

资金

  1. National Natural Science Foundation of China [51731002]

向作者/读者索取更多资源

La0.75Mg0.25Ni3.2Co0.2Al0.1 hydrogen storage alloy, the nickel-metal hydride (MH/Ni) secondary battery negative electrode, was modified by CuSO4 solution (3 wt% in Cu in contrast with alloy weight) and PdCl2 solution varied from 1 wt% to 4 wt% in Pd in contrast with alloy weight with a simplified pollution-free replacement plating method, aiming at improving its comprehensive electrochemical properties. The XRD analysis and SEM images combined with EDS results reveal that Cu and Pd nanoparticles are uniformly plated on the pristine alloy surface. The relative amount of Pd on the Cu-Pd coated alloy surface increases notably as the PdCl2 concentration increases in the plating solution. Electrochemical tests indicate that alloy electrodes modified by Cu-Pd composite coating show perfect activation performance, which achieve the maximum discharge capacity at the first charge-discharge cycle. Moreover, alloy electrodes coated with Cu-Pd perform dramatically enhanced high rate dischargeability (HRD). The enhancement increases firstly and then decreases as the content of Pd increases in the Cu-Pd coating. Meanwhile, the cycle life of modified alloys is also improved significantly. Among all the samples, the Cu-Pd coated alloy with 3 wt% Pd content in the PdCl2 solution reinforces the comprehensive electrochemical properties most sufficiently, with dischargeability of 86.4% under 1500 mA/g and remaining capacity of 82.7% after 100 cycles. (C) 2017 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据