4.7 Article

Impacts of electrode coating irregularities on polymer electrolyte membrane fuel cell lifetime using quasi in-situ infrared thermography and accelerated stress testing

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 43, 期 12, 页码 6390-6399

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2018.02.050

关键词

Coating irregularities; PEMFC; Manufacturing; Infrared thermography; Accelerated stress test; Defects

资金

  1. U.S. Department of Energy [DE-AC36-08GO28308]
  2. Alliance for Sustainable Energy, LLC
  3. U.S. Government

向作者/读者索取更多资源

In-line quality control diagnostics for roll-to-roll (R2R) manufacturing techniques will play a key role in the future commercialization of the polymer electrolyte membrane fuel cell (PEMFC) used in automotive applications. These diagnostics monitor the fabrication of the membrane electrode assembly (MEA), which detect and flag any non-uniformity that may potentially harm PEMFC performance and/or lifetime. This will require quantitative thresholds and a clear distinction between harmful defects and harmless coating irregularities. Thus, novel fuel cell hardware with quasi in-situ infrared (IR) thermography capabilities is utilized to understand how bare spots in the cathode electrode impact MEA lifetime. An accelerated stress test (AST) simulates chemical and mechanical degradation modes seen in vehicular operation. The actual open circuit voltage and rate of change of this voltage are used as in-situ indicators for MEA failure, enabling capture of the progression of failure point development. Bare spot coating irregularities located at the center of the electrode were found to have no impact on MEA lifetime when compared to a pristine MEA. However, MEA lifetime was found to be considerably shortened when these same irregularities are located at the cathode inlet and, especially, the anode inlet regions of the fuel cell. (C) 2018 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据