3.8 Proceedings Paper

Multiphysics modeling and simulation of selective laser sintering manufacturing processes

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.procir.2014.03.015

关键词

selective laser sintering; additive manufacturing; rapid manufacturing; rapid protoyping

向作者/读者索取更多资源

A significant percentage of materials used in industry start in particulate form. In many modern applications, these systems undergo processing which necessitate a multiphysical analysis. Several manufacturing applications have arisen that involve the multiphysical response of particulate systems in the presence of strongly coupled electromagnetic, optical, and thermal fields. The significant multifield coupling requires methods that can capture the unique and essential physics of these systems. Specifically, in this work, the modeling and simulation of selective laser sintering of particulate materials is discussed. Such processes involve harnessing optical energy to heat and fuse powdered materials together in an additive process. Selective laser sintering allows for the rapid manufacturing or prototyping of parts with complex geometries. In order to simulate such a process in a rapid manner, the approach pursued by the authors is to develop a computational tool by assembling relatively simple, physically meaningful, models at the small scale, for many interacting particles. This allows for much more refined estimates of the resulting overall system temperature and, ultimately, its change of phase from a solid, to a liquid, and possibly even to a gas. Large-scale three-dimensional examples are provided. (C) 2014 Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据