3.8 Proceedings Paper

2D CFD Modeling of H-Darrieus Wind Turbines using a Transition Turbulence Model

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.egypro.2014.01.015

关键词

H-Darrieus Wind Turbine; CFD; Transition Turbulence Modeling; URANS; VAWT performance prediction

向作者/读者索取更多资源

In the present paper, the authors describe the strategy to develop a 2D CFD model of H-Darrieus Wind Turbines. The model was implemented in ANSYS Fluent solver to predict wind turbines performance and optimize its geometry. As the RANS Turbulence Modeling plays a strategic role for the prediction of the flowfield around wind turbines, different Turbulence Models were tested. The results demonstrate the good capabilities of the Transition SST turbulence model compared to the classical fully turbulent models. The SST Transition model was calibrated modifying the local correlation parameters through a series of CFD tests on aerodynamic coefficients of wind turbines airfoils. The results of the tests were implemented in the 2D model of the wind turbine. The computational domain was structured with a rotating ring mesh and the unsteady solver was used to capture the dynamic stall phenomena and unsteady rotational effects. Both grid and time step were optimized to reach independent solutions. Particularly a high quality 2D mesh was obtained using the ANSYS Meshing tool while a Sliding Mesh Model was used to simulate rotation. Spatial discretization algorithm, interpolation scheme, pressure - velocity coupling and turbulence boundary condition were optimized also. The 2D CFD model was calibrated and validated comparing the numerical results with two different type of H-Darrieus experimental data, available in scientific literature. A good agreement between numerical and experimental data was found. The present work represents the basis to develop an accurate 3D CFD unsteady model and may be used to validate the simplest 1D models and support wind tunnel experiments. (C) 2013 The Authors. Published by Elsevier

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据