3.8 Proceedings Paper

Equivalent-circuit and transport-based mobility models of microcrystalline silicon solar cells

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.egypro.2013.12.027

关键词

Microcrystalline silicon; solar cells; computer modelling; carrier transport; mobility

向作者/读者索取更多资源

Microcrystalline silicon thin film solar cells exhibit optimal PV efficiency when the absorber layer contains similar proportions of crystalline and amorphous phases. When the crystalline fraction is reduced below 30%, efficiency falls very steeply, from around 8% to as low as 2%, and does not recover until fully amorphous growth conditions are established. We demonstrate that an electrical model, comprising two parallel-connected diodes scaled to reflect material composition, qualitatively predicts the features observed in the PV parameters. However the scale of the reduction in fill-factor is not reproduced. As an alternative approach, a homogeneous transport model is proposed in which carrier mobilities are scaled in accordance with values determined by the time-of-flight experiment. This model predicts a large reduction in fill-factor for low-crystallinity absorbers more in keeping with measurement. A novel carrier transport landscape is proposed to account for mobility variations. (C) 2013 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据