4.7 Article

Magnetohydrodynamics flow and heat transfer of Cu-water nanofluid through a partially porous wavy channel

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2017.11.117

关键词

MHD; Nanofluid; Porous media; Heat transfer; Wavy channel; LBM

向作者/读者索取更多资源

In this paper, the lattice Boltzmann method is applied to investigate the effects of uniform vertical magnetic field on thermo-hydrodynamics of nanofluid in a partially porous channel. Cu-water nanofluid with constant pressure gradient is forced to flow into the channel while the top wall is heated by constant heat flux and bottom wavy wall of the channel is insulated against heat. The porous media is modeled using the Brinkman-Forchheimer model. Good agreements with the previous results verify that the selected numerical method is a capable method for simulating magnetic fluids in a porous media. The effects of active parameters, i.e. solid volume fraction of nanoparticles, pressure gradient, magnetic field and permeability of the porous layer, on thermo-hydrodynamics of flow are examined. The results reveal that the Nusselt number is an increasing function of nanoparticle volume fraction, Hartmann number, pressure gradient and Darcy number, although the effect of Darcy numbers and pressure gradient on the temperature profile are more noticeable than others. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据