4.5 Article

Experimental study of a round jet impinging on a flat surface: Flow field and vortex characteristics in the wall jet

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ijheatfluidflow.2018.01.010

关键词

Heat and mass transfer; Impinging jets; Turbulent wall jets; Particle image velocimetry

资金

  1. Edmund J. Safra Philanthropic Foundation
  2. Wolfson Family Charitable Trust
  3. Technion Fund for Promotion of Research
  4. Israeli Ministry of Construction and Housing [2022402/2015]

向作者/读者索取更多资源

Impinging jets are widely used in cooling applications. Here, particle image velocimetry measurements were performed to study the flow field (focusing on the wall jet) and vortex characteristics of a round air jet, impinging on a flat surface at three Reynolds numbers, Re = 1,300, 6,260 and 12,354 (based on nozzle diameter, D, and jet exit velocity), and stand-off distance, 4.75D. In the wall jet, self-similarity (outer layer scaling) of the mean radial velocity, rms values of velocity fluctuations and Reynolds shear stress was obtained for Re = 12,354. At Re = 1,300, impinging primary vortices generated highly coherent primary-secondary vortex pairs that were convected along the wall. In contrast, at the two highest Re, primary vortices broke-up into small-scale structures prior to impingement and vortex pairs were only revealed after conditionally averaging the data. Their strengths, areas and numbers were analyzed using the instantaneous swirling strength and vorticity distributions. Primary vortex strength peaked at break-up or impingement (Re = 1,300) and reduced during interaction with the secondary vortex. Analyzing the different contributions to the averaged vorticity equation revealed that stretching and realignment due to the mean flow always strengthened the vortices while turbulent diffusion mainly weakened them.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据