4.5 Article

β-Cell-targeted blockage of PD1 and CTLA4 pathways prevents development of autoimmune diabetes and acute allogeneic islets rejection

期刊

GENE THERAPY
卷 22, 期 5, 页码 430-438

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/gt.2015.18

关键词

-

资金

  1. Mayo Foundation
  2. Eisenberg Stem Cell Trust
  3. Minnesota Partnership Grant
  4. Mayo Center for Regenerative Medicine
  5. National Institutes of Health [HL098502]

向作者/读者索取更多资源

Protection of beta cells from autoimmune destruction potentially cures type 1 diabetes mellitus (T1D). During antigen presentation, interactions between cytotoxic T-lymphocyte antigen-4 (CTLA4) and B7 molecules, or programmed death 1 (PD1) and its ligand PDL1, negatively regulate immune responses in a non-redundant manner. Here we employed beta-cell-targeted adeno-associated virus serotype 8 (AAV8)-based vectors to overexpress an artificial PDL1-CTLA4Ig polyprotein or interleukin 10 (IL10). beta-Cell-targeted expression of PDL1-CTLA4Ig or IL10 preserved beta-cell mass and protected NOD mice from T1D development. When NOD mice were treated with vectors at early onset of hyperglycemia, PDL1-CTLA4Ig or IL10 alone failed to normalize the early onset of hyperglycemia. When drug-induced diabetic mice received major histocompatibility complex (MHC)-matched allo-islets, with or without pretreatment of the PDL1-CTLA4Ig-expressing vector, PDL1-CTLA4Ig-expressing islets were protected from rejection for at least 120 days. Similarly, transplantation of PDL1-CTLA4Ig-expressing MHC-matched islets into mice with established T1D resulted in protection of allo-islets from acute rejection, although islet grafts were eventually rejected. Thus the present study demonstrates the potent immuno-suppressive effects of beta-cell-targeted PDL1-CTLA4Ig overexpression against T1D development and allo-islet rejection. The gene-based simultaneous inhibition of PD1 and CTLA4 pathways provides a unique strategy for immunosuppression-free tissue/organ transplantation, especially in the setting of no established autoimmunity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据