4.6 Article

Demand side management through home area network systems

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijepes.2017.10.026

关键词

DSM; DR; FPGA; HAN; UML; Verilog

向作者/读者索取更多资源

The increasing demand for power in the Electrical Power System (EPS) causes a significant increase of power in the daily load curve as well as transmission line overload. The large variability in energy consumption in the EPS combined with unpredictable weather events can lead to a situation in which, to save the stability of the EPS, power limits must be introduced or even industrial customers in a given area have to be disconnected, which causes financial losses. Nowadays, a Transmission System Operator (TSO) is looking for additional solutions to reduce peak power, because existing approaches (mainly building new intervention power units or tariff programs) are not satisfactory due to the high cost of services in combination with an insufficient power reduction effect. The paper presents an approach to reduce peak loads with the use of Home Area Network (HAN) systems installed at residential units. The algorithm of the HAN system, executed by the HAN controller, is modeled using Unified Modeling Language (UML). Then using model transformation techniques, the UML model is translated into Verilog description, and is finally implemented in the Field Programmable Gate Array (FPGA). The advantages of the proposed approach are that with only a small loss of residential user comfort, there is a gain in energy reduction for a relatively small cost, an effective and convenient design of the HAN algorithm, and the flexible maintenance of HAN systems. The latter gain is possible thanks to using modern FPGAs, which allow for dynamic reconfiguration of the HAN controller. It means that a HAN algorithm of a selected user can be exchanged without power interruption of other residential users. A practical example illustrating the proposed approach and a calculation of the potential gains from its implementation are also presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据