4.6 Article

Unc-51 like kinase 1 (ULK1) in silico analysis for biomarker identification: A vital component of autophagy

期刊

GENE
卷 562, 期 1, 页码 40-49

出版社

ELSEVIER
DOI: 10.1016/j.gene.2015.02.056

关键词

Autophagy; ULK1; Palmitoylation; Phosphorylation; Haplotype; Protein-protein interactions

资金

  1. Department of Biotechnology, India [BT/PR6784/GBD/27/466/2012]

向作者/读者索取更多资源

Autophagy is a degradation pathway involving lysosomal machinery for degradation of damaged organelles like the endoplasmic reticulum and mitochondria into their building blocks to maintain homeostasis within the cell. ULK1, a serine/threonine kinase, is conserved across species, from yeasts to mammals, and plays a central role in autophagy pathway. It receives signals from upstream modulators such as TIP60, mTOR and AMPK and relays them to its downstream substrates like Ambral and ZIP kinase. The activity of this complex is regulated through protein-protein interactions and post-translational modifications. Applying in silico analysis we identified (i) conserved patterns of ULK1 that showed its evolutionary relationship between the species which were closely related in a family compared to others. (ii) A total of 23 TFBS distributed throughout ULK1 and nuclear factor (erythroid-derived) 2 (NFE2) is of utmost significance because of its high importance rate. NEF2 has already been shown experimentally to play a role in the autophagy pathway. Most of these were of zinc coordinating class and we suggest that this information could be utilized to modulate this pathway by modifying interactions of these TFs with ULK1. (iii) CATTT haplotype was prominently found with frequency 0.774 in the studied population and nsSNPs which could have harmful effect on ULK1 protein and these could further be tested. (iv) A total of 83 phosphorylation sites were identified; 26 are already known and 57 are new that include one at tyrosine residue which could further be studied for its involvement in ULK1 regulation and hence autophagy. Furthermore, 4 palmitoylation sites at positions 426, 927, 1003 and 1049 were also found which could further be studied for protein-protein interactions as well as in trafficking. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据