4.7 Article

Screening behaviorally active compounds based on fluorescence quenching in combination with binding mechanism analyses of SspOBP7, an odorant binding protein from Sclerodermus sp.

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2017.10.149

关键词

Fluorescence quenching; Odorant-binding proteins; Reverse chemical ecology; Sclerodermus sp; Screening of active compounds

资金

  1. National Natural Science Foundation of China [31230015]
  2. Fundamental Research Funds for the Central Universities [2662015PY139]

向作者/读者索取更多资源

Reverse chemical ecology approaches based on the recognition and transport function of odorant binding proteins (OBPs) have been used to screen behaviorally active compounds of insects. In the first place, behaviorally active compounds from Sclerodermus sp., an important ectoparasite of Monochamus alter flatus Hope, were screened by SspOBP7. The Fluorescence quenching assays revealed that only six of 19 ligands that had binding affinities in fluorescence competition-binding assays formed complexes with SspOBP7. Pursuing this further, two non-polar ligands, terpinolene and (+)-alpha-longipinene showed strong attractant activities for Sclerodermus sp. The pH change could lead to conformational transition of SspOBP7 from one state to another, which results in low binding affinities at low pH. Finally, a mutational analysis of the SspOBP7 binding cavity proved that changing the cavity had a greater effect on non-polar ligands, and the specific recognition of ligands by SspOBP7 might depend mainly on the appropriate shapes of the cavity and ligands. The most obvious finding to emerge from this work is that the use of fluorescence quenching to study the binding mechanism of OBPs could aid reverse chemical ecology approaches by narrowing the scope of candidate behaviorally active compounds. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据