4.7 Article

Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijbiomac.2017.09.064

关键词

Bacterial cellulose; Gold nanoparticles; Pedot:pss; Nanocomposites; Biocompatibility; Electrical conductivity

资金

  1. National Research Foundation (NRF) - Ministry of Education, Science and Technology, Korea [NRF-2014-R1A1A2055756]

向作者/读者索取更多资源

This study reports the fabrication of highly conducting and biocompatible bacterial cellulose (BC)-gold nanopartides (AuNPs)-poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) (BC-AuNPs-PEDOT:PSS) composites for biology-device interface applications. The composites were fabricated using ex situ incorporation of AuNPs and PEDOT:PSS into the BC matrix. Structural characterization, using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and x-ray diffraction (XRD) analysis, confirmed the uniform nature of the synthesized BC-AuNPs and BC-AuNPs-PEDOT:PSS composites. Four-point probe analysis indicated that the BC-AuNPs and BC-AuNPs-PEDOT:PSS films had high electrical conductivity. The composites were also tested for biocompatibility with animal osteoblasts (MC3T3-E1). The composite films supported adhesion, growth, and proliferation of MC3T3-E1 cells, indicating that they are biocompatible and non-cytotoxic. AuNPs and PEDOT:PSS, imparted a voltage response, while BC imparted biocompatibility and bio-adhesion to the nanocomposites. Therefore, our BC-AuNPs-PEDOT:PSS composites are candidate materials for biology-device interfaces to produce implantable devices in regenerative medicine. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据