4.7 Article

Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijbiomac.2017.10.185

关键词

Packaging film; Reinforcement; Ultra violet shielding; Nanocomposite; Biodegradability

向作者/读者索取更多资源

In this research, a novel carboxymethyl cellulose (CMC)-based nanocomposite films containing sodium montmorillonite (MMT) (5% wt) and zinc oxide (ZnO) (I, 2, 3 and 4% wt) nanoparticles (NPs) were fabricated via casting method. The results revealed that addition of NPs decreased water vapor permeability of the films by about 53%, while moisture content, density and glass transition temperature increased. The nanomaterials enhanced resistance of the nanocomposites against tensile stress at the expense of elongation at break. Nano-ZnO was very effective than nanoclay in UV-light blocking (99% vs. 60%) associated with sacrificing the films transparency. Formation of hydrogen bonds between the hydroxyl groups of CMC and MMT was evidenced by FTIR spectroscopy. According to the XRD analysis, clay nanolayers formed an exfoliated structure in the nanocomposites, whereas ZnO NPs raised crystallinity. SEM micrographs showed well-dispersed MMT and ZnO NPs through the films surface. Antibacterial test showed that vulnerability of Gram-positive S. aureus toward ZnO NPs was more than that of Gram-negative E. Coli. In conclusion, simultaneous incorporation of MMT and ZnO NPs improved the functional characteristics of CMC film and extended the potential for food packaging applications. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据