4.4 Article

Magnetic drug targeting simulations in blood flows with fluid-structure interaction

出版社

WILEY
DOI: 10.1002/cnm.2954

关键词

blood flow; fluid-structure interaction; magnetic drug targeting; particle tracking

资金

  1. National Science Foundation [DMS-1412796]

向作者/读者索取更多资源

We present fluid-structure interaction simulations of magnetic drug targeting (MDT) in blood flows. In this procedure, a drug is attached to ferromagnetic particles to externally direct it to a specific target after it is injected inside the body. The goal is to minimize the healthy tissue affected by the treatment and to maximize the number of particles that reach the target location. Magnetic drug targeting has been studied both experimentally and theoretically by several authors. In recent years, computational fluid dynamics simulations of MDT in blood flows have been conducted to obtain further insight on the combination of parameters that provide the best capture efficiency. However, to this day, no computational study addressed MDT in a fluid-structure interaction setting. With this paper, we aim to fill this gap and investigate the impact of the solid deformation on the capture efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据