4.6 Article

Deformation fabrics of glaucophane schists and implications for seismic anisotropy: the importance of lattice preferred orientation of phengite

期刊

INTERNATIONAL GEOLOGY REVIEW
卷 61, 期 6, 页码 720-737

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/00206814.2018.1449142

关键词

Glaucophane schist; lattice preferred orientation; seismic anisotropy; phengite; Franciscan complex

类别

资金

  1. Korea Meteorological Administration [KMIPA2017-9020]
  2. Korea Meteorological Institute (KMI) [KMIPA2017-9020] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Strong seismic anisotropy is observed in many subduction zones. This effect is attributed partly to subducting oceanic crust that is transformed into blueschist facies rocks. Because blueschist facies constituents such as glaucophane, epidote, and phengite show strong anisotropic elasticity, seismic anisotropy in subducting oceanic crust can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied the deformation fabrics and seismic properties of phengite-rich epidote-glaucophane schists from the Franciscan Complex of Ring Mountain, California. The samples are composed mainly of glaucophane, epidote, and phengite. Some samples contain abundant phengite, the maximum being 40%. The LPOs of glaucophane showed that the [001] axes are aligned subparallel to lineation, and both (110) poles and [100] axes are aligned subnormal to foliation. The epidote [001] axes are aligned subnormal to foliation, with both (110) and (010) poles aligned subparallel to lineation. The LPOs of phengite are characterized by the maxima of [001] axes subnormal to foliation, and both (110) and (010) poles and [100] axes are aligned in a girdle subparallel to foliation. The phengite showed substantially strong seismic anisotropy (AV(P) = 42%, max.AV(S) = 37%). The glaucophane schist with abundant phengite showed significantly stronger seismic anisotropy (AV(P) = 30%, max.AV(S) = 23%) than the epidote-glaucophane schist (AV(P) = 13%, max.AV(S) = 9%). When the subduction angle of phengite-rich glaucophane schist is considered, the polarization direction of the fast S-waves for vertically propagating S-waves changed to a nearly trench-parallel direction for the subduction angle of 45-60 degrees, and the S-wave anisotropy became stronger for vertically propagating S-waves with increasing subduction angles. Our data showed that phengite-rich blueschist facies rock can therefore contribute to the strong trench-parallel seismic anisotropy occurring at the subducting oceanic crust and at the slab-mantle interface in many subduction zones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据