4.7 Article

Microstructure, mechanical and thermal oxidation behavior of AlNbTiZr high entropy alloy

期刊

INTERMETALLICS
卷 100, 期 -, 页码 9-19

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.intermet.2018.05.015

关键词

High entropy alloys; Oxidation; Mechanical; Casting; Microstructure; Scanning electron microscopy

资金

  1. Alexander von Humboldt Foundation, Germany
  2. Deutsche Forschungsgemeinschaft DFG [HA7796/1-1]

向作者/读者索取更多资源

The developed as-cast AlNbTiZr high entropy alloy (HEA) resulted in the formation of solid solution bcc dendrites along with the inter-dendritic Zr2Al intermetallic phase. Due to low-density of 5.74 g/cm(3) and high yield strength of about 1650 MPa (under compression testing), the alloy exhibited high specific yield strength of approximately 287 kPa m(3)/kg. Further, the AlNbTiZr HEA showed high fracture strength of 1950 MPa and substantial plastic strain of approximately 17.9%. During the isothermal thermo-gravimetry analysis in the synthetic air, at 873, 973, 1073, 1173 and 1273 K for 3 h, the mass gain behavior of the alloy was nearly parabolic indicating the formation of the protective oxide layer. Further, the long-term oxidation studies of the AlNbTiZr HEA carried out in open air atmosphere for 50 hat 873, 1073 and 1273 K confirmed that the oxide layers formed were protective, intact, and spallation did not occur. Formation of complex oxides such as AlNbO4 and Ti2ZrO6 along with Al2O3, NbO, ZrO2 , and TiO2 as confirmed by X-ray diffraction could have led to the sluggish oxidation kinetics of the AlNbTiZr HEA. In contrast, the HfNbTiZr HEA showed poor oxidation resistance at 873 K.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据