4.7 Article

Investigation of the Preferential Doping Site and Regulating on the Visible Light Response and Redox Performance for Fe- and/or La-Doped InNbO4

期刊

INORGANIC CHEMISTRY
卷 57, 期 14, 页码 8558-8567

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.8b01287

关键词

-

资金

  1. National Natural Science Foundation of China [21777078, 21567017]
  2. Project of Research and Development of the Applied Technology for Inner Mongolia [201702112]

向作者/读者索取更多资源

The preferential doping site, visible light response, and redox potential of Fe- and/or La-doped InNbO4 (INO) were investigated using first-principles density functional theory. Eight designed doping models, including Fe and/or La doping at In or/ and Nb sites of INO are constructed, respectively. It was found that Fe-doping and Fe,La-codoping to substitute In into an INO cell are energetically favorable, confirming that the steric hindrance plays a vital role for the selective doping site than the charge of the dopants. Fe doping always formed two impurity bands between the conduction and valence bands, originated from Fe 3d state, inferring the well visible light response. Furthermore, the presence of La has a specific regulation effects for Fe doping although the energy levels of the single La-doped models were completely similar to those of the undoped INO. The electron exchange between La and Fe dopants results in the significant interaction for codoping INO. Importantly, by doping La into INO cell, the redox potentials of Fe-doped INO could be well-regulated. The band potential moved to the more positive energy level of the models Fe-doped at Nb sites, while it shifted to the more negative level if Fe was doped at In site of La-INO. The present investigation may provide the guidance for the designative dopants to construct the photocatalyst with stable, visible response, and good redox performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据